铝元素是地壳中含量最多的金属元素,质量丰度为7.45%。铝材料使用量仅次于钢铁材料,是使用量最大的有色金属材料[1−3]。铝及其合金具有比强度高、可加工性好、导热导电性好、耐腐蚀性能优良等,广泛的应用于建筑材料、汽车制造、航空航天、国防工业、电子产品等领域[4]。但是铝合金是脆硬性材料,韧性差、硬度低、不耐磨,所以铝合金的表面处理成为了人们研究的热点。目前常用的铝合金表面处理技术有阳极氧化、电镀、化学镀、激光熔覆和微弧氧化[5−7]。
微弧氧化(Micro arc oxidation,MAO)通过电解液与相应电参数的组合,在铝及其合金表面依靠弧光放电产生的瞬时高温高压作用,原位生长出以基体金属氧化物为主的陶瓷膜层。近年来,微弧氧化着色技术引起了研究人员的关注。与传统的表面着色技术相比,微弧氧化膜层是原位生长形成的,与基体之间的结合力好;通过微弧氧化制备出的氧化膜层致密,耐磨耐蚀性好[8−11,13]。本文通过加入着色剂NH4VO3,制备黑色微弧氧化膜,通过改变工艺参数,探究对微弧氧化膜的影响。
1. 实验
1.1 实验药品与器材
试样的材料为2024铝合金,成分如表1所示。试样为25 mm×20 mm×1.5 mm的矩形块,在试样的正上方打孔用以连接导线。实验开始前要对试样进行预处理,首先进行机械打磨,用水性砂纸从400#打磨至1500#,完成后使用超声波清洗仪清洗20 min,拿出后使用吹风机吹干;实验负极使用不锈钢。
实验在(NaPO3)6–Na2SiO3体系下进行,电解质溶液均使用分析纯试剂与去离子水配置,成分如表2所示。
实验电源使用微弧氧化单向脉冲电源[12],采用恒流模式,电流密度为10 A/dm2,频率分别为200、500、700和1000 Hz;占空比分别为10%、15%、20%、25%和30%;反应时间分别为4、6、8和10 min。使用带有磁力搅拌功能的低温恒温槽控制反应温度,反应温度在30 °C左右。实验装置示意图如图1所示。
1.2 检测设备
实验使用日立S4800扫描电镜观察氧化陶瓷膜的表面形貌。耐腐蚀性能测试使用上海辰华牌CHI660e电化学工作站,电化学实验采用三电极体系,工作电极为2024铝合金试样,参比电极为饱和甘汞电极,辅助电极为铂电极,测试溶液为室温质量分数3.5%的NaCl溶液,初始电位–1.2 V,终点电位1.2 V,扫描段数为1,终止电位的保持时间为0,扫描速度1 mV/s,测试面积为10 cm2,非测试部分使用石蜡进行密封。陶瓷膜厚度使用德国EPK Mini Test 720涂层测厚仪测量,在试样表面取5个点测量,取平均值。
2. 结果与讨论
2.1 脉冲频率的影响
图2是在不同脉冲频率下黑色氧化膜表面形貌,从图中可以看出,微弧氧化膜层表面是由许多类似于“火山口”状的物质堆积而成,这是由于在通电过程中电压不断增大击穿氧化膜层形成放电通道,反应生成的气体从放电通道中排出,表面部分熔融态的氧化铝从放电通道放出进入电解质溶液,由于磁力搅拌和低温恒温槽的冷却作用,熔融状态的氧化铝快速凝固堆积,从而形成特殊的凝固堆积形状。随着脉冲频率的增加,膜层表面的平整度与孔隙率先增加后减少,在脉冲频率为500 Hz时表面较为平整,孔隙率较低。